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Abstract 
We present a value of information methodology for the exploration of hidden geothermal 

resources. Specifically, this methodology is applicable for spatial decisions, such as, “Where to 

drill?” We evaluate how well the magnetotellurics (MT) technique is able to delineate the lateral 

position of the low resistive materials that are indicative of a hidden resource.  The low resistive 

layer represents where alteration has occurred. However, the existence of a clay cap does not 

ensure that economic temperatures are still present below; the clay layer represents the historical 

high temperature of the system. 

To represent the lateral uncertainty, we create simplified prior earth models that include a clay 

cap in one of N possible lateral locations. We use these prior models to simulate the data 

collection, inversion and interpretation of MT data. MT’s ability to delineate the correct lateral 

location can be quantified by comparing the true location in each prior model to what location 

was interpreted from each respective inverted model. This is called the information reliability. 

The value of information (VOI) depends on this reliability measure but also is affected by 

whether or not a resource still exists below the clay cap. Therefore, we include in the 

methodology the probability of the resource existing under the clay cap. We explicitly model the 

two different outcomes: the positive value when a resource exists and the loss if one does not. 

Table 1: Table of Symbols 

Clay cap location x 

Index of Clay Cap Locations i 
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Total number of Considered Clay Cap Locations N 

Decision alternative a 

Existence or Non-Existence of Resource   

Value: metric to define outcome of decision v 

Vector of earth parameters z 

Index of models with same clay cap location t 

Total number of realizations with clay cap i   

Decision predictor/function (eg drilling)   ( ) 

Geophysical forward modeling (i.e. MT 

simulation) 
 ( ) 

Electrical resistivity model ρ 

Synthetic data d 

Synthetic data with noise  ̃ 

Inverted electrical resistivity model  ̃ 

Automatic interpretation function  ( ) 

Interpreted Location of Clay Cap  ̃ 

Index of interpreted Clay Cap Locations j 

Prior Value Vprior 

Value with Perfect Information VPI 

Value with Imperfect Information VII 

Value of Imperfect Information VOIimperfect 

 

1. Introduction 
The goal of the work presented in this paper is to demonstrate value of information for spatial 

geothermal decisions, such as “where to drill?” A spatial decision can be defined as any decision 

whose outcome depends on the spatial distribution of some phenomena (Trainor-Guitton, 2010). 

This may be especially challenging with hidden (or blind) geothermal resources. We motivate 

our modeling after the conceptualization of these resources by Cumming (2009). Figure 1 

demonstrates a possible blind/hidden geothermal resource where no surface exposure exists to 

indicate a possible geothermal resource. Figure 1 demonstrates a scenario where faults and 
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fractures allow for the circulation of hot water to accessible depths. As a result, smectite and 

illite clays are formed just above the shallowest depths where the hot water circulates. 

 

Figure 1: Conceptualization of blind geothermal resource where no surface feature exists to demonstrate existence of a 

possible resource (from Cummings 2009) 

 

VOI is a decision analysis method that quantifies how relevant and reliable any particular 

information source is, given a decision with a highly uncertain outcome (Bratvold et al., 2009). 

VOI can be used to justify the costs of collecting the proposed data. In its simplest form, the VOI 

equation can be expressed as:  

                                 (1) 

where value V, is the metric used to quantify the outcome of a decision; the higher the value, the 

more “successful” an outcome of a decision is. Vprior , which captures the expected outcome of a 

decision taken without the proposed information, will be addressed in Section 2. Section 2 

describes how the prior uncertainty of the subsurface is represented with multiple realizations of 

simplified geothermal reservoir models representing different possible locations of the resource. 

In Section 3, we will describe how the value with information (Vwith information) can be estimated by 

simulating the MT response on the prior models. Specifically, we devise a method for estimating 

MT’s reliability to determine the location of the geothermal reservoirs. 

Depending on the decision and the models included in the prior, VOI can underscore the 

strengths and weakness of a particular information source. We demonstrate this by simulating the 

physics of the MT measurement on many geothermal reservoir models that represent possible 

exploration scenarios, and by performing inversions of MT data. First we give background of 

why MT has been used for geothermal exploration.  
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Information Source considered: Magnetotellurics 
MT has strengths and weaknesses when used to explore for geothermal resources. Historically, 

the MT technique has been used to delineate the low resistive materials that are indicative of 

alteration caused by the circulation of hot fluids (Gunderson et al, 2000; Newman et al., 2008).  

Figure 2 is also from Cumming (2009) which provides a conceptual model of electrical 

resistivity for the geologic representation of Figure 1. The hidden resource is at the apex of the 

isotherms which coincides with the concave-side of the 10 ohm-m clay cap (yellow). Therefore, 

for our modeling and VOI demonstration purposes, this clay cap (yellow) is the key potential 

indicator of the resource.  

 

Figure 2: Conceptual model of electrical resistivity for a hidden geothermal resource (from Cumming, 2009) 

This alteration reflects the historical high temperature of the system, therefore the existence of a 

clay cap does not ensure that economic temperatures still exist below it. Karlsdóttir et al. (2012) 

describe how the resistivity alone cannot confirm a viable geothermal resource: 

The resistivity reflects the alteration caused by the heating of the rocks and reflects the 

peak temperature experienced by the system, being it at the present or in the past. … The 

resistivity structure reflects the temperature, provided there is equilibrium between 

alteration and present temperature. In case of cooling the alteration may remain and the 

resistivity will reflect the temperature at which the alteration was formed. Whether the 

resistivity (and the alteration) indicates the present temperature of the system will only be 

confirmed by drilling. 
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In other words, the MT measurements may help us determine where a clay cap exists, but they 

can’t tell us definitively about the temperature below the cap. Additionally, the cap’s lower 

electrical resistivity tends to shunt electrical currents and greatly reduces sensitivity to the 

reservoir. VOI will allow us quantify both MT’s usefulness (spatial coverage and sensitivity to 

low resistive clays) and limitations (low resistivity is not uniquely associated with higher 

temperature i.e. whether a resource exists or not).  

2. Uncertainty of Possible Hidden Resource (Clay Cap) Location: Where 

to drill? 
Figure 3 depicts the decision scenario that we have described thus far in a decision tree. The tree 

represents the decision-to-outcome process chronologically from left to right. First a decision of 

where to drill is taken (extreme left). The final outcome (extreme right) will depend on where the 

clay cap is and if a resource exists under the cap.  For this work, we only consider how the MT 

source can help detect the location of the clay cap. In Section 4, we will introduce how we 

account for the probability of the resource existing (represented by   (    )). 

 

Figure 3: Decision tree where blue squares depict the spatial decision alternatives and the red nodes depict both the 

uncertainty of the clay cap locations and the resource existence. Lastly, the unique combination of these alternatives and 

uncertainties result in an outcome measured in value (green diamonds). 
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To represent our uncertainty in the location of the clay cap, we create prior models with clay 

caps of varying lateral locations. We assume the hidden resource below the clay cap can only 

exist in one of N discrete locations.  Within our prior models, the clay cap is represented at N=15 

different locations, where the horizontal location (x) of the middle of the clay cap varies between 

-3500m and  +3500m. Let us represent each model by  

  ( )(    )                      (2)  

where vector z contains the electrical resistivity and any other relevant properties (i.e. 

temperature, porosity, etc.) of the model and t indexes all models that have the same clay cap 

location. Figure 4 demonstrates model  ( )(   ); the x location denotes the “throat” of the 

clay cap. Figure 2 portrays this “throat” as the shallowest location of the highest isotherms. 

Therefore, the xi location represents the shallowest access to the potential resource. The clay cap 

in all models ranges between 0.5 and 1.5 km depth and is 3km wide. 

 

Figure 4: One realization of the electrical resistivity model representing the hidden resource. The red layer represents the 

yellow 10 Ohm-m layer in Figure 2. The blue layer is the air and the green the background subsurface. 

In turn, we assume that we only consider drilling in these N locations, if at all. Thus, the spatial 

alternatives (represented by index a) are to drill in one of the N possible clay cap locations or not 

to drill at all. These are represented as the columns in Table 2, while the different possible clay 

cap locations (model categories xi) are represented in the rows of Table 2. The last column of the 

table represents the option to not drill at all. 
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Table 2: Table of Decisions alternatives (a) and value outcomes (v) assuming resource exists under clay cap 

Alternatives 

→ 

 

Clay Cap 

Locations (in 

models) ↓ 

Drill @ 

x=+3500m 

(a=1) 

Drill @ 

x=+3000m 

(a=2) 

… 

Drill @ 

x= -3000m 

(a=14) 

Drill @ 

x= -3500m 

(a=15) 

Don’t 

Drill 

(a=16) 

Clay Cap @  

x= +3500m 
Highest 

Value $$ 
Value $ … LOSS LOSS 0 

Clay Cap @  

x= +3000m 
Value $ 

Highest 

Value $$ 
… LOSS LOSS 0 

⁞    ⁞ ⁞ ⁞ 

Clay Cap @  

x= -3000m 
LOSS LOSS … 

Highest 

Value $$ 
Value $ 0 

Clay Cap @  

x= -3500m 
LOSS LOSS … Value $ 

Highest 

Value $$ 
0 

 

The outcome of choosing a decision alternative a with a clay location of xi, is quantified with the 

“value outcome metric.” The value metric allows for comparison between outcomes from 

different decision alternatives, which can be represented by function ga.  

   
( )(  )    ( (    )

( ))  

                                 

(3)  

Table 2 depicts that the highest outcomes (most successful decisions) occur along the diagonal: 

this is when the drilling location aligns with the location of the middle of the clay cap.  The value 

outcomes then drop off as you move away from the diagonal signifying the mismatch between 

the possible resource location and the drilling location. 

Vprior: the best decision option given prior uncertainty   
Decision analysis concepts are often described in terms of lotteries and prizes (Pratt et al, 1995). 

By choosing to drill or not, a decision maker is choosing whether or not to participate in a lottery 

with certain perceived chances of winning a prize (drilling into a profitable reservoir); however, 

this lottery also involves the chances of losing money (missing the resource or drilling into an 

uneconomic reservoir). By utilizing Vprior, a decision-maker can logically determine when one 

should participate in this lottery given both the prior uncertainties and possible gains and losses. 

Vprior is only dependent on the current state of uncertainty (  (    )) and the outcomes of the 

decision (  (  )):  

 
           

 
(∑  (    )  (  )

 

   

)            
(4)  
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The Vprior expression identifies which decision alternative will on average result with the highest 

value (most successful outcome).  The prior distribution is used to calculate a weighted average 

inside the summation and the    
 

 captures the highest outcome value among all the different 

spatial alternatives a.  

Vprior is inherently a very subjective measure, since the definition of the prior is to quantify what 

you don’t know. Therefore, we test three different prior distributions and two different value 

outcome matrices (Table 2). Figure 5 displays the three prior distributions. The uniform 

distribution (black) declares that there’s an equal likelihood that the clay cap exists at any of the 

N locations between -3,500m and +3,500m.  The two Gaussian distributions (red and green 

curves in Figure 5) reflect a belief that the resource is centered at x=0.  The Gaussian with the 

smaller standard deviation (red curve) reflects less uncertainty of the location than the Gaussian 

with the larger standard deviation (green curve). 

 

Figure 5: 3 Different Prior Distributions used to test Vprior sensitivity 

Two value outcome matrices were assessed. Figure 6 displays a value outcome matrix that 

penalizes drilling decisions that miss the clay cap by ≥1000m. Whereas Figure 7 is a more 

“forgiving” value outcome matrix, in that losses are not occurred until the drilling location is 

quite far (4000m) from the actual location of the clay cap. The individual values in Figure 6 and 
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Figure 7 are arbitrary and can be replaced by more realistic dollar amounts in order to represent 

specific locations or particular drilling applications. 

 

Figure 6: Value outcomes that drop off quickly (i.e. losses are experienced when drilling 1,500m from actual clay cap). 

Rows represent the actual clay cap location and columns represent the drilling location (decision alternative). Green 

equals gain and red equal loss. 

 

Figure 7: Value outcomes that drop off slowly (i.e. losses are only experienced when one drills >4,000m from the actual 

clay cap location). Rows represent the actual clay cap location and columns represent the drilling location (decision 

alternative). Green equals gain and red equal loss. 

 

Table 3 contains the resulting six different Vprior’s. The prior uncertainty of the location of the 

clay cap decreases down the rows of the Table 3 and the overall individual value outcomes 

increase through the columns. Therefore, Vprior is lowest in the top left and highest in the bottom 

right of the table. This makes sense since a completely uninformed prior is the uniform 

distribution, and therefore entering the “geothermal lottery” is quite risky. However, if the 

uncertainty of the clay cap location decreases (represented by the Gaussian distributions) then 

the Vprior increases, and more so with a smaller standard deviation (last row). These Gaussian 

distributions could represent a situation where prior geological or well information exists that 

indicates a possible clay cap location. The difference between the two columns is that the 

individual value outcomes drop-off more slowly for increasing mismatches between the drilling 

and the clay cap locations (the off-diagonals of Table 2). Therefore, there is less risk of a 

monetary loss for the furthest right column and all the Vprior’s are higher in this column.  

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14 a15

x = -3500 $500,000 $200,000 $0 -$300,000 -$300,000 -$300,000 -$300,000 -$300,000 -$300,000 -$300,000 -$300,000 -$300,000 -$300,000 -$300,000 -$300,000

x = -3000 $200,000 $500,000 $200,000 $0 -$300,000 -$300,000 -$300,000 -$300,000 -$300,000 -$300,000 -$300,000 -$300,000 -$300,000 -$300,000 -$300,000

x = -2500 $0 $200,000 $500,000 $200,000 $0 -$300,000 -$300,000 -$300,000 -$300,000 -$300,000 -$300,000 -$300,000 -$300,000 -$300,000 -$300,000

x = -2000 -$300,000 $0 $200,000 $500,000 $200,000 $0 -$300,000 -$300,000 -$300,000 -$300,000 -$300,000 -$300,000 -$300,000 -$300,000 -$300,000

x = -1500 -$300,000 -$300,000 $0 $200,000 $500,000 $200,000 $0 -$300,000 -$300,000 -$300,000 -$300,000 -$300,000 -$300,000 -$300,000 -$300,000

x = -1000 -$300,000 -$300,000 -$300,000 $0 $200,000 $500,000 $200,000 $0 -$300,000 -$300,000 -$300,000 -$300,000 -$300,000 -$300,000 -$300,000

x = -500 -$300,000 -$300,000 -$300,000 -$300,000 $0 $200,000 $500,000 $200,000 $0 -$300,000 -$300,000 -$300,000 -$300,000 -$300,000 -$300,000

x = 0 -$300,000 -$300,000 -$300,000 -$300,000 -$300,000 $0 $200,000 $500,000 $200,000 $0 -$300,000 -$300,000 -$300,000 -$300,000 -$300,000

x = 500 -$300,000 -$300,000 -$300,000 -$300,000 -$300,000 -$300,000 $0 $200,000 $500,000 $200,000 $0 -$300,000 -$300,000 -$300,000 -$300,000

x = 1000 -$300,000 -$300,000 -$300,000 -$300,000 -$300,000 -$300,000 -$300,000 $0 $200,000 $500,000 $200,000 $0 -$300,000 -$300,000 -$300,000

x = 1500 -$300,000 -$300,000 -$300,000 -$300,000 -$300,000 -$300,000 -$300,000 -$300,000 $0 $200,000 $500,000 $200,000 $0 -$300,000 -$300,000

x = 2000 -$300,000 -$300,000 -$300,000 -$300,000 -$300,000 -$300,000 -$300,000 -$300,000 -$300,000 $0 $200,000 $500,000 $200,000 $0 -$300,000

x = 2500 -$300,000 -$300,000 -$300,000 -$300,000 -$300,000 -$300,000 -$300,000 -$300,000 -$300,000 -$300,000 $0 $200,000 $500,000 $200,000 $0

x = 3000 -$300,000 -$300,000 -$300,000 -$300,000 -$300,000 -$300,000 -$300,000 -$300,000 -$300,000 -$300,000 -$300,000 $0 $200,000 $500,000 $200,000

x = 3500 -$300,000 -$300,000 -$300,000 -$300,000 -$300,000 -$300,000 -$300,000 -$300,000 -$300,000 -$300,000 -$300,000 -$300,000 $0 $200,000 $500,000

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14 a15

x = -3500 $500,000 $433,000 $366,000 $299,000 $232,000 $165,000 $98,000 $31,000 -$36,000 -$103,000 -$170,000 -$237,000 -$304,000 -$371,000 -$438,000

x = -3000 $433,000 $500,000 $433,000 $366,000 $299,000 $232,000 $165,000 $98,000 $31,000 -$36,000 -$103,000 -$170,000 -$237,000 -$304,000 -$371,000

x = -2500 $366,000 $433,000 $500,000 $433,000 $366,000 $299,000 $232,000 $165,000 $98,000 $31,000 -$36,000 -$103,000 -$170,000 -$237,000 -$304,000

x = -2000 $299,000 $366,000 $433,000 $500,000 $433,000 $366,000 $299,000 $232,000 $165,000 $98,000 $31,000 -$36,000 -$103,000 -$170,000 -$237,000

x = -1500 $232,000 $299,000 $366,000 $433,000 $500,000 $433,000 $366,000 $299,000 $232,000 $165,000 $98,000 $31,000 -$36,000 -$103,000 -$170,000

x = -1000 $165,000 $232,000 $299,000 $366,000 $433,000 $500,000 $433,000 $366,000 $299,000 $232,000 $165,000 $98,000 $31,000 -$36,000 -$103,000

x = -500 $98,000 $165,000 $232,000 $299,000 $366,000 $433,000 $500,000 $433,000 $366,000 $299,000 $232,000 $165,000 $98,000 $31,000 -$36,000

x = 0 $31,000 $98,000 $165,000 $232,000 $299,000 $366,000 $433,000 $500,000 $433,000 $366,000 $299,000 $232,000 $165,000 $98,000 $31,000

x = 500 -$36,000 $31,000 $98,000 $165,000 $232,000 $299,000 $366,000 $433,000 $500,000 $433,000 $366,000 $299,000 $232,000 $165,000 $98,000

x = 1000 -$103,000 -$36,000 $31,000 $98,000 $165,000 $232,000 $299,000 $366,000 $433,000 $500,000 $433,000 $366,000 $299,000 $232,000 $165,000

x = 1500 -$170,000 -$103,000 -$36,000 $31,000 $98,000 $165,000 $232,000 $299,000 $366,000 $433,000 $500,000 $433,000 $366,000 $299,000 $232,000

x = 2000 -$237,000 -$170,000 -$103,000 -$36,000 $31,000 $98,000 $165,000 $232,000 $299,000 $366,000 $433,000 $500,000 $433,000 $366,000 $299,000

x = 2500 -$304,000 -$237,000 -$170,000 -$103,000 -$36,000 $31,000 $98,000 $165,000 $232,000 $299,000 $366,000 $433,000 $500,000 $433,000 $366,000

x = 3000 -$371,000 -$304,000 -$237,000 -$170,000 -$103,000 -$36,000 $31,000 $98,000 $165,000 $232,000 $299,000 $366,000 $433,000 $500,000 $433,000

x = 3500 -$438,000 -$371,000 -$304,000 -$237,000 -$170,000 -$103,000 -$36,000 $31,000 $98,000 $165,000 $232,000 $299,000 $366,000 $433,000 $500,000
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Table 3: Vprior for different prior uncertainties (rows) and different individual value outcomes (columns).  

Prior Distribution ↓   (  ): Gains drop quickly 

(Figure 6) 

  (  ): Gains drop off slowly 

(Figure 7) 

Uniform Prior $0 $249,866.67 

Gaussian Prior (μ=0m, 

σ2
=1800) 

$0 $324,818.74 

Gaussian Prior (μ=0m, 

σ2
=900) 

$140,859.84 $406,931.52 

 

Value of Perfect Information 
The value of perfect information (VOIperfect) provides an upper bound on what a new information 

source could have, given your prior uncertainty and modeled value outcomes. Perfect 

information for this example assumes that some measurement could reveal without error, the 

location of the clay cap. With this perfect information, theoretically, one would drill exactly at 

the neck of the clay cap. The value with this perfect information is expressed as  

 
     ∑  (    )  (   

 
   (  ))

 

   

           
(5)  

which only differs from Vprior by the placement of the    
 

, which is now before the averaging 

(∑   (    )
 
    ). This represents that we will have the information before we choose a location 

for drilling (a), and therefore we can choose the alternative that has the highest value for each 

clay cap location. For both value outcome matrices (Figure 6 and Figure 7), this is the diagonal: 

$500,000. Then the average of all best outcomes for each of the clay cap locations is calculated. 

Since all three of the prior distributions are symmetric, VPI is $500,000 for all 6 combinations of 

prior uncertainty and value outcomes (Table 4). Following Equation 1, the value of perfect 

information, is the difference between this and Vprior.  

                          (1) 

As seen in Table 4 information has more value in cases of higher uncertainty (uniform prior) and 

greater loss when one drills far from the target (Figure 6). 

Table 4: VOIperfect for different prior uncertainties (rows) and different individual value outcomes (columns 

Prior Distribution ↓   (  ): Gains drop quickly 

(Figure 6) 

  (  ): Gains drop off slowly 

(Figure 7) 

Uniform Prior $500,000 - $0 = $500,000 
$500,000 - $249,866 = 

$250,133 

Gaussian Prior (μ=0m, 

σ
2
=1800) 

$500,000 - $0 = $500,000 
$500,000 - $324,818 = 

$175,181 

Gaussian Prior (μ=0m, 

σ
2
=900) 

$500,000 - $140,859 = 

$359,140 

$500,000 -$406,931 =  

$93,068 
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3. MT: Simulating Data Collection, Inversion and Interpretation of Clay 

Cap Location 
To assess the value of MT information, we must have an estimate of MT’s reliability to locate 

the clay cap. We estimate the reliability by mimicking the data collection, inversion and 

interpretation processes.  

The workflow to estimate the value with imperfect MT information can be described in 7 steps.  

1. The MT response is forward modeled (represented with function ( ) ) for each prior 

model. We utilize the electromagnetic simulation code MARE2DEM (Key & Oval, 

2011). Frequencies between 0.1 and 1000 Hz (21 frequencies total, 4 per decade) are 

observed with 21 receivers. The line of MT receivers covers -5,000m to +5,000m, 

therefore the entire clay cap is covered in each of the models.  

 
  
( )
  ( (  

( )
))                    

    

(6)  

2. 4% random Gaussian noise is added to all of the T*N (each of the prior models) MT 

forward responses.  

  ̃ 
( )
    

( )
        

( )
  (   )                        (7)  

 

3. Geophysical inversion is performed for each noisy data set; one inverted electrical 

resistivity model ( ̃ 
( )

) is obtained for every prior model. Figure 8 includes 3 prior 

models (first column) and their respective inversion models (last column). 

  ̃ 
( )
    ( ̃ 

( )
)                 

    

(8)  

4. For each inversion result, automatic interpretation (denoted by function  ( )) is used to 

locate the clay cap “throat” at fixed depths. The location of the maximum resistivity 

within the minimum resistivity region is chosen as the interpreted clay cap “throat” 

location  ̃ 
( ): 

  ̃ 
( )   ( ̃ 

( )
)                     

    

(9)  

5. The data likelihood/reliability is calculated by comparing the interpreted location of clay 

cap in the inverted image ( ̃ 
( )) to its prior model’s original location (  

( )). 

   ( ̃   ̃      )            (10)  
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6. The information posterior is calculated: use Bayes rule to estimate the probability of the 

actual clay cap location given an interpreted clay location  ̃ 
( ). 

   (      ̃   ̃ )             (11)  

 How the reliability and information posterior are calculated will be further explained later 

in this section. 

7. Lastly, the value with imperfect information (VII) is calculated using the information 

posterior. 

 
    ∑  ( ̃   ̃ )

 

   

{   
 
[∑  (      ̃   ̃ )  (  ) 

  

   

]}              
(12)  

 

 

Figure 8: First column contains 3 prior models. The second column represents their respective inversion results. Clay cap 

located at a) x=0, b) x=+2500m and c) x=-2500m. The locations of MT receivers are shown as triangles on the surface. 



13 

 

 

Table 5 is one way to visualize the information posterior calculated in Step 6 (Equation 10).  The 

rows represent the actual or true clay cap location and the columns represent the interpreted 

locations. The frequency (count per each row-column combination) is calculated and used in the 

value with imperfect information expression (Equation 11).   

Table 5: Information reliability of MT to decipher location of clay cap. 

Interpreted 

locations→ 

 

True 

locations ↓ 

Interpret Clay 

Cap at 

x=+3500m 

(j=1) 

Interpret Clay 

Cap 

at x=+3000m 

(j=2) 
… 

Interpret Clay 

Cap at 

x= -3500m 

(j=N) 

Clay Cap @  

x= +3500m 

(i=1) 

  (        ̃   ̃   )   (        ̃   ̃   ) …   (        ̃   ̃   ) 

Clay Cap @  

x= +3000m 

(i=2) 

  (        ̃   ̃   )   (        ̃   ̃   ) …   (        ̃   ̃   ) 

⁞     

Clay Cap @  

x= -3500m 

(i=N) 

  (        ̃   ̃   )   (        ̃   ̃   ) …   (        ̃   ̃   ) 

 

The value with imperfect information VII (Equation 11) uses the information posterior as a 

“misinterpretation rate,” accounting for how frequently the interpretation of the MT data may 

correctly or incorrectly locate the clay cap. With this interpretation of the clay location  ̃  from 

the information, the alternative with the highest outcome can be selected (represented by the 

   
 

). This is calculated for every possible interpretation (index j) and these are weighted by the 

data marginal,   ( ̃   ̃ )  which accounts for how often that interpretation may occur.  The 

actual reliability values for this example are shown in Figure 9.  
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Figure 9: Reliability for example problem. Each row represents actual or true clay cap (prior model) and the columns 

represent how frequently that inverted clay cap was interpreted at different locations (represented by symbol ~x). Thus, 

each row sums to 100%. 

Two VII measures can be calculated using the two value outcome matrices of Figure 6 and Figure 

7.  These are shown in Table 6. As expected, both VII’s are lower than VPI of $500,000 (Table 4).  

Also, VII is lower when the less “forgiving” value outcome matrix (Figure 6) is used. When the 

interpreted location doesn’t match the actual location, this will result in larger losses and 

consequently a lower VII compared to the case when Figure 7 is used.  

Table 6: Two VII results from two different value outcome matrices (Figure 6 and Figure 7) 

   (  ): Gains drop quickly 

(Figure 6) 

  (  ): Gains drop off slowly 

(Figure 7) 

VII $410,666.67  $478,560.00 

 

4. Value of Imperfect Information Results 
Now the value with imperfect information, VII, can be put into the VOI equation (equation 1) to 

calculate the value of imperfect information VOIimperfect: 

                      
 

(13)  

Six different VOIimperfect’s are calculated using the previous Vprior (Table 3) and the two VII’s 

(Table 6).  These are shown in Table 7. The value of imperfect information is highest ($410K) 

when the prior uncertainty of the clay cap is highest (uniform prior and Gaussian with σ2
=1800) 

and the penalties for drilling far from the clay cap are harsher (Figure 6).  This is intuitively 

rational. Data should have more value when our ignorance is highest and the risk for costly 

outcomes to decisions is greater.  Conversely, the value of imperfect information is lowest 

($71K) when the prior uncertainty reflects the high confidence in where the clay cap is (Gaussian 

with σ2
=900) and drilling far from the actual clay cap doesn’t result in a severe economic loss.  

~x = -3500 ~x = -3000 ~x = -2500 ~x = -2000 ~x = -1500 ~x = -1000 ~x = -500 ~x = 0 ~x = 500 ~x = 1000 ~x = 1500 ~x = 2000 ~x = 2500 ~x = 3000 ~x = 3500

x = -3500 71.4% 28.6% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

x = -3000 0.0% 37.5% 62.5% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

x = -2500 0.0% 0.0% 0.0% 100.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

x = -2000 0.0% 0.0% 0.0% 100.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

x = -1500 0.0% 0.0% 0.0% 0.0% 100.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

x = -1000 0.0% 0.0% 0.0% 0.0% 0.0% 100.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

x = -500 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 100.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

x = 0 0.0% 0.0% 0.0% 0.0% 0.0% 28.6% 0.0% 42.9% 28.6% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

x = 500 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 100.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

x = 1000 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 33.3% 0.0% 66.7% 0.0% 0.0% 0.0% 0.0% 0.0%

x = 1500 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 16.7% 83.3% 0.0% 0.0% 0.0% 0.0%

x = 2000 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 100.0% 0.0% 0.0% 0.0%

x = 2500 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 57.1% 42.9% 0.0%

x = 3000 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 100.0% 0.0%

x = 3500 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 16.7% 0.0% 83.3%
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Table 7: VOIimperfect Results 

VOIimperfect   (  ): Gains drop quickly 

(Figure 6) 

  (  ): Gains drop off slowly 

(Figure 7) 

Uniform Prior $410,667 - $0 = $410,667 
$478,560 - $249,867 

=$228,693 

Gaussian Prior (μ=0m, 

σ2
=1800) 

$410,667 - $0 = $410,667 
$478,560 - $324,819 

=$153,741 

Gaussian Prior (μ=0m, 

σ2
=900) 

$410,667 - $140,859 = 

$269,806 

$478,560 - $406,931 =  

$71,628 

 

Accounting for No Resource under Clay Cap 
Up until now, we’ve assumed that a resource does exist under the clay cap:   (      )   .  

Now we will account for the occurrence of no resource existing under the clay cap which is 

represented as the second uncertainty in the decision tree of Figure 3. We link each combination 

of prior model and decision alternative to two possible value outcomes: the value outcome if 

there is a resource (    ) or not (    ). The average of the two now replaces the quantity of 

Equation 3: 

   
( )(  )    (      )   

( )
(    )    (      )  

( )(    )     
                   

(14)  

where   (        ) is the probability of an economic resource existing under the clay cap. For 

now, we assume that the resistivity structure would remain the same whether a resource exists or 

not under the clay cap since the clay cap is representative of the historical temperature (see 

Section 1). Table 8 demonstrates how the value of information decreases with decreasing 

probability of occurrence of an economic reservoir. 

Table 8: VOIimperfect for different probabilities of an economic resource occurring under the clay cap. 

VOIimperfect 

  (  ): Gains 

drop quickly 

(Figure 6) 

  (      ) = 

1.0 

  (      ) = 

0.7 

  (      ) = 

0.5 

  (      )= 

0.3 

Uniform Prior 
$410.67 - $0 = 

$410,667 

$244,992.0 - $0 = 

$197,466 

$55,333 - $0 = 

$55,333 
$0 -$0 = $0 

Gaussian Prior  

(μ=0m, σ
2
=1800) 

$410,667 - $0 = 

$410,667 

$197,466 - $0= 

$197,466 

$55,333 - $0 = 

$55,333 
$0 -$0 = $0 

Gaussian Prior  

(μ=0m, σ
2
=900) 

$410,667 - 

$140,859 = 

$269,806 

$197,466 - 

$8,601 = 

$188,864 

$55,333 - $0= 

$55,333 
$0 -$0 = $0 
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5. Concluding Remarks & Future Work 
Our results show how the value of information depends on four factors.  

1) The reliability of the geophysical technique considered.  

If we compare Table 4 and Table 7, we see the impact of the “imperfect MT message.” Because 

of inaccuracies introduced from the added noise, inversion, interpretation, and MT’s limited 

resolution, we won’t always perfectly identify the clay cap’s location. We account for this by 

estimating the reliability and calculating the value of imperfect information.  

2) The description of the prior uncertainty (Figure 5). 

Table 3 summarizes the different Vprior’s calculated.  With greater uncertainty, represented by the 

uniform distribution, a new source of information has more potential to have value since the 

Vprior is lower.  

3) The value outcomes (Figure 6 and Figure 7). 

The value outcomes represent the estimated gains and losses due to the combination of the 

location of the clay cap and the choice of drilling location. The value outcomes of Figure 6 

penalize drilling decisions that are far from the actual cap. Therefore, information in this 

situation will have more value since it can help us avoid costly outcomes. This is seen in Table 7. 

4) The strength of the relationship between a clay cap and an economic geothermal 

reservoir.  

The last set of results included the possibility that no resource existed under the clay cap. With 

smaller probabilities of a resource existing (and thus a smaller chance of a high-valued outcome), 

the value of information decreases. 

For this example, VOI increases when the prior uncertainty is higher and the value outcomes 

decrease quickly for when one drills far from the target clay cap. It should be noted that these 

results are highly dependent on the framing of the decision problem. Here we focus on hidden 

resources and assume that a clay cap is indicative of a possible geothermal source. Many more 

geothermal possibilities could be included, such as a low-enthalpy system, in which there would 

be no clay cap. Future work will include more complex prior models by adding more 

heterogeneity to the prior models to mimic the structure seen in Figure 2.  
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